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Pedro G. Lind,1 Reza M. Baram,2 and Hans J. Herrmann>>
Unstitute for Computational Physics, Universitdt Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart, Germany
2Computational Physics, IfB, HIF E12, ETH Honggerberg, CH-8093 Ziirich, Switzerland
3Depan‘amenzo de Fisica, Universidade Federal do Ceard, 60451-970 Fortaleza, Brazil
(Received 11 November 2007; published 26 February 2008)

We generalize a recent study of random space-filling bearings to a more realistic situation, where the spacing
offset varies randomly during the space-filling procedure, and show that it reproduces well the size distribu-
tions observed in recent studies of real fault gouges. In particular, we show that the fractal dimensions of
random polydisperse bearings sweep predominantly the low range of values in the spectrum of fractal dimen-
sions observed along real faults, which strengthen the evidence that polydisperse bearings may explain the
occurrence of seismic gaps in nature. In addition, the influence of different distributions on the offset is studied
and we find that a uniform distribution is the best choice for reproducing the size distribution of fault gouges.
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I. INTRODUCTION

In the early 1990s the question of the possibility to tile an
arbitrarily large strip of space-filling roller bearings without
friction or slipping was addressed [1], motivated by the study
of real systems such as seismic gaps. Seismic gaps are re-
gions along a fault zone where earthquakes do not take place
and therefore they could be explained by sheared plates on a
space-filling bearing [2]. Fault zones or fault gouges are the
interface regions between two tectonic plates in relative mo-
tion to each other and are typically self-similar [3]. The me-
chanical origin of the power law in the particle size distribu-
tion was associated with the particle’s fracture probability
which has been proposed to be controlled by the relative size
of its nearest neighbors [3,4]. More recently, a geophysical
model [5] explained the different values of the fractal dimen-
sion, ranging from d;=2.6 to dy=3, by taking into account
the fault gouge strain. While such a model explains the dy-
namical origin of different power laws, there is still the ques-
tion if the space-filling bearing scenario is able to reproduce
such empirical results in a simple and systematic way. Bear-
ings of disks or spheres are particular packings that resemble
jammed packings [6] for a sufficiently large density, in the
sense that the relative position between particles is fixed.
However, the contact points are such that by rotating one
single particle all particles can rotate without rubbing on
each other—i.e., with no dissipation of energy similar to
what occurs in seismic gaps. To have this property a simple
coloring condition suffices for both disks or spheres, as ex-
plained below. Further, fault gouges present a broad range of
particle sizes and corresponding densities [3], which appeals
for a procedure to pack polydisperse sets of particles up to an
arbitrary large density. Therefore, by reproducing with space-
filling bearings the same particle size distributions observed
in fault zones, one can strengthen the hypothesis that the
existence of seismic gaps in fault zones may be related to the
emergence of particular geometrical arrangements of their
composing rocks, after local fragmentation due to the tec-
tonic motion. Figure 1 illustrates two random space-filling
bearings in two and three dimensions.

Pioneering studies with space-filling bearings were done
using deterministic procedures in two [1] and three [7] di-

1539-3755/2008/77(2)/021304(7)

021304-1

PACS number(s): 45.70.—n, 46.55.+d, 61.43.Bn

mensions and also using random algorithms [8]. However,
up to now only specific initial configurations and fixed pa-
rameter values were addressed. In this paper we explore a
subset of the phase space of possible space-filling bearings—
namely, the one that can be constructed in the procedure
described in Ref. [8]. The procedure is further developed
below to construct realistic space-filling bearings in order to

FIG. 1. (Color online) Illustration of a random space-filling
bearing in (a) three and (b) two dimensions. Disks and spheres of
the same color do not touch each other. The random space-filling
bearing starts with a large disk or sphere, maximizing polydisper-
sity (see text).
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reproduce the range of fractal dimensions observed in fault
gouges [3-5,9]. Our model is parametrized by a unique pa-
rameter that controls the strength of fragmentation and takes
into account ensemble averages. Despite the wider freedom
in the parameters and initial configurations, the system pre-
sents robust results in what concerns the fractal dimension.
In particular, we will show that by varying the range of ad-
missible values of the control parameter one finds fractal
dimensions observed in fault gouges.

We start in Sec. II by describing in some detail the pro-
cedure to generate random space-filling bearings, introducing
a parameter that accounts for fragmentation at the local scale.
In Secs. III and IV we describe the results for two and three
dimensions, respectively, with special emphasis on the size
distribution and the fractal dimension. Discussions and con-
clusions are given in Sec. V.

II. RANDOM SPACE FILLING OF PARTICLES

In this section we will start by reexamining previous pro-
cedures [8] for constructing random space-filling packings
and bearings and then introduce the necessary ingredients to
obtain a fully random space-filling bearing.

Random bearings in two and three dimensions are con-
structed in the following way. First, one starts by randomly
distributing a small number N, of disks or spheres within a
given range of sizes, without touching each other. Second,
one fills the empty spaces in the system by introducing itera-
tively the largest possible disk or sphere in the neighborhood
of some empty region. Third, one resizes some disk or sphere
in order for the packing to be bichromatic (bearing condi-
tion), i.e., only two colors are needed to color all disks in
such a way that no disks of the same color touch each other.
This guarantees the bearing condition: particles are able to
roll on each other without friction or slipping. Figures 2(a)
and 2(b) give illustrative examples of such random bearings
in two dimensions.

The filling procedure is done by choosing randomly a
void within the interdisk free space and then fitting the larg-
est disk in it—i.e., fit the disk that touches the three nearest
disks in the neighborhood, as illustrated in Fig. 2(a). For the
three-dimensional case one considers spheres touching the
four nearest neighbors.

The coloring procedure is done by attributing a proper
color to the introduced disk. In the case that the three neigh-
boring disks have the same color, one attributes the other
color to the new disk. Otherwise, one chooses only one of
the neighbors to be in contact with the new disk and the new
disk shrinks to a size with radius r=ar, (0= a=1), where r,
is the radius before shrinking, and gets a different color as
the disk it touches. Figure 2(b) illustrates this coloring pro-
cedure.

Parameter « is our control parameter. For constant a=1
one obtains the particular case where bearing cannot be guar-
anteed. In this case, frustrated contacts emerge when par-
ticles are forced to rotate [8], which would eventually lead to
the fragmentation of the disks into smaller ones. Recently
a method to implement realistic grain fracture in three-
dimensional simulations of granular shear was proposed [10]
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(c)

FIG. 2. (Color online) Sketch of the construction of a random
space-filling bearing. (a) A new disk (solid circle) is randomly in-
serted in the system and is shifted and enlarged to the maximal
accessible size (dashed circle) without overlapping neighboring
disks. Then, (b) it is reduced by a factor 0 <@ =1, keeping a single
contact point with one of the neighbors and assuming the opposite
color. (c) To start the space filling with a large disk one needs to
place previously a few small “seeds” in the system and then pro-
ceed as in (a) and (b) (see text).

based on breakable bonds between particles within a me-
dium. We keep the model simple by using instead the reduc-
tion factor a, which mimics the effect of fragmentation: by
shrinking a particle originally with frustrated contacts, we
mimic its fragmentation into smaller particles that will fill
the empty space left after the fragmentation.
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The algorithm described above was previously [8,11] used
in two and three dimensions by fixing a given initial configu-
ration with N, disks having sizes within a given fixed range
and also by using a fixed reduction factor « during the filling
and coloring stages. The density of the packing was studied
as a function of the number N of existing spheres as well as
the cumulative particle size distribution. It was found that the
cumulative distribution obeys a power law—namely, N(r)
= [Tn(q)dq~r~%, where d is the fractal dimension of the
bearing [12].

Next, we introduce the additional points to strengthen pre-
vious findings and improve the algorithm described above.

First, there is the statistical significance of the results and
their sensitiveness to initial configurations—i.e., to the initial
range [r*—68/2,r"+6/2] of sizes. This initial configuration
may influence the polydispersity of the system and conse-
quently the attained distribution after filling the entire sys-
tem. As we will see, a large number N, of initial disks typi-
cally influence how the density increases during the space-
filling procedure.

To take this point into account we enable the construction
procedure to start with an initial configuration having a
single arbitrarily large disk (or sphere) and perform ensemble
averages on a significant number of initial configurations.
Concerning the single initial large disk, one should notice
that it does not suffice for one single disk to introduce a
second one, because in two dimensions each inserted disk
needs to have at least three neighbors (four neighbors for
three dimensions). However, as illustrated in Fig. 2(c), such a
starting disk can be introduced into the system by previously
distributing a few very small “seed disks” in the system and
then following the algorithm described above. The number
of such seeds is small, and therefore they do not affect sig-
nificantly the cumulative size distribution. Their role is that
the average distance between them is eventually of the order
of the system size, enabling the introduction of a first disk
with the size of the order of the system size. Of course,
depending on the number and distribution of the seeds, the
first initial disks may have also a size within the initial range
of sizes. In this way, one generalizes the previous procedure
[8] and maximizes the admissible polydispersity.

Second, we also introduced a criterion to increase compu-
tational efficiency of our algorithm. The neighborhood where
the neighboring disks (or spheres) are searched for must be
chosen conveniently. We propose to choose a size that de-
creases with the increase of the density p, since the denser
the packing, the smaller the empty spaces into which to put
new disks. Therefore, the radius r, of the neighborhood of a

given random point introduced in the system at iteration n is

1-py
updated as rn=7(rsys—rmax), where ry, and ry,, are the

radii of the system and of the largest disk or sphere in it,
respectively.

Third, we also consider the control parameter « to vary
randomly within a tunable range of values. In particular, we
argue that although a tentative value of the constant a could
be obtained by analyzing samples of gouges in real situa-
tions, one expects that a certain range of admissible values
for « is the most realistic assumption. Indeed, we show that
the typical range of fractal dimensions observed in real fault
gouges is in this way reproduced.
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III. TWO-DIMENSIONAL CASE

We start this section by addressing the two-dimensional
random space-filling bearing and systematically reviewing
the behavior of the packing for different, but fixed, values of
a and study the effect of fixed initial size ranges (no maxi-
mal admissible polydispersity). Figure 3 shows for this case
the density p(N) and cumulative size distribution N(r) of
two-dimensional random space-filling packings.

Figure 3(a) shows the density p as a function of the num-
ber N of disks for @=1.0 (packing) and also for a=0.2 and
0.6 (bearings) separately, starting from N,=40 disks with
radius in the range [r*—g,r*+§] having r*=0.11 and &
=0.06. As expected, the convergence p— 1 as N increases is
faster for larger values of a. We consider one fixed initial
configuration with N, initial disks, and therefore the different
curves coincide for N<N,,.

In Fig. 3(b) we plot the distribution of the radius r of the
disks, where r,,,:r’“—és is the minimal radius of the initial set
of disks and the deviation from the power law for r>r,, is
due to the initial configuration. Below this value r,,, the size
distribution obeys a power law N=br"?, where dy is the
fractal dimension of the packing, plotted in the inset as a
function of a (symbols). As one sees from the inset, the
fractal dimension typically takes values in the range 1.2
<df< 1.4, differently from the values found in two-
dimensional cuts of fault gouges (~1.6*+0.1). There is a
maximum of d, for a=0.5 that can be explained from the
definition of « in the algorithm described above. For a «
<0.5, to each new disk introduced there is a remaining free
space characterized by a' > 0.5 such that &+ a'=1 and simi-
larly for «>0.5.

Both Figs. 3(a) and 3(b) consider the same initial configu-
ration. To study the influence of the initial configurations, we
plot in Fig. 3(c) the density p(N), fixing a=0.6, similar to
previous works [11], and using different size ranges for the
initial sets of Ny=40 disks—namely, in [0.05R,0.10R],
[0.15R,0.20R], and [0.20R,0.25R]—i.e., ranges with the
same width 6=0.06, but centered around different values—
namely, around r*=0.075, 0.175, and 0.225, respectively.

Since different initial configurations are now used, the
density is no longer the same below N, as in Fig. 3(a). Fur-
ther, one observes that the density converges to 1 for an
increase of the value of r*. In the inset the density p(N) is
plotted by fixing r*=0.075 and starting with an initial con-
figuration having different widths—namely, 6=0.2, 0.4, 0.6,
and 0.8. In these cases the density gives always similar de-
pendences on N. Therefore, the average size r* of the initial
configuration is the important parameter to tune the density
of the packing. Its width can be varied without changing
significantly the results.

In Fig. 3(d) we plot the accumulative size distribution
N(r) of the disks for the same conditions as in Fig. 3(c). The
value of the exponent remains almost constant, df~ 1.35. In
other words, the fractal dimension is not very sensitive to the
initial configuration and the parameter on which the fractal
dimension depends more strongly must be indeed «a.

Since « is also the parameter controlling the fragmenta-
tion of disks with frustrated contacts (see above), we will
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FIG. 3. Density and size distribution in two-dimensional random space-filling packings. (a) Density p of the packing as a function of the
total number of disks N for different values of @=0.2, 0.6, and 1.0, together with (b) the distribution of the radius r of the disks. In both
cases, one starts from a fixed initial configuration of Ny=40 disks with radius in the range [0.08R,0.14R] with R=1 being the radius of the
system [see Fig. 1(b)]. The minimal radius of the initial set of disks is indicated as r,,~0.08 (see text). Fitting of the power-law range in (b),
the distribution N(r)=br~% yields the fractal dimension d; as a function of « plotted in the inset. In (c) one plots the density as a function
of N for the initial sets of Ny=40 disks in [0.05R,0.10R], [0.15R,0.20R], and [0.20R,0.25R]—i.e., ranges with the same interval width, but
centered around different values—namely, around r*=0.075, 0.175, and 0.225, respectively, and fixing @=0.6. In the inset of (c) the density
p(N) is plotted for initial ranges [r*—g,r*+§] having the same center r*=0.075, but different widths §=0.2, 0.4, 0.6, and 0.8. In (d) we plot
distribution N(r) of the spheres as a function of r for the same conditions as in (c). In all cases N=10> disks.

now study it more deeply. When « is able to vary randomly,
the fragmentation of the largest disk in the free holes can be
regarded as a random process by its own. We next consider
a to be each time randomly selected from a fixed interval
[@"—Aa/2,a"+Aa/2]. We will show that when enabling a
to take different values for each particle shrinking, one ob-
tains fractal dimensions similar to the ones observed in fault
gouges [3-5].

To this end, we put everything together—namely, «
varying in the middle range of admissible values, a large
initial disk, and an ensemble average over a significant num-
ber of initial configurations. The results for the density and
size distributions are shown in Fig. 4, where one considers
three initial seeds in the range r),=2r,,~ R/1000, with R the
size of the system and « varies randomly in the range [0.5
—Aa/2,0.5+Aa/2]. Averages are over a sample of 100 ini-
tial configurations. Since the initialization, filling, and color-
ing procedures are now all random, we call these systems
fully random space-filling bearings.

Figure 4(a) shows the density as a function of the number
N of disks for Aa=0.2, 0.4, 0.6, and 0.8. One sees an abrupt
transition above N=3 (initial seeds), due to the introduction
of the first large disk. For all four cases the dependence of p

on the range of a values is similar, with the convergence
toward p=1 being slightly slower for narrower ranges, be-
cause they hinder the occurrence of large disks.

Figure 4(b) shows the size distribution N(r) for each of
the four ranges. All the distributions almost coincide, as
shown in the inset where the fractal dimension d, taken from
N(r) ~ % is almost constant (dj~1.54). This value is larger
than the one obtained when « is kept constant (see Fig. 3).
Notice that the value of the fractal dimension for Aa=0,
though corresponding to the case of constant a=0.5, is dif-
ferent from the one plotted in the inset of Fig. 3(b), since the
constructing procedure of the bearing is slightly different
(see Sec. II).

Since the above value is obtained from a significantly
larger sample of initial configurations and all the parameters
a and position of the disks are randomly selected, we will

consider this value Ef: 1.54 as the characteristic exponent of
the size distribution for fully random two-dimensional space-

filling bearings. The average characteristic value c_lfz 1.54 ob-
tained lies in the range of values measured of the fractal
dimension measured in real fault gouges (D=1.6+0.1) [3,4],
as indicated with a dashed line and shadow region in the
inset of Fig. 4(b).
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Until now, the value of a was considered to vary uni-
formly within a certain range of values. If the probability
distribution for choosing « values is Gaussian, similar results
are obtained, where the standard deviation o of the distribu-
tion plays a similar role as the width A« used in Fig. 4.

However, if we take values within a range, say,
a €[0.1,0.9], and chose them according to a power-law dis-
tribution P(a)~ o™, the fractal dimension changes signifi-
cantly, as shown in Fig. 5. Even for small values of the
exponent S—e.g., B=0.5—the fractal dimension decreases
when compared to the value obtained for the uniform distri-
bution (8=0) and remains approximately constant at dy
~1.43.

Notice that 8=0 in Fig. 5 corresponds to Aaw=0.8 in Fig.
4(b). If the power-law distribution selects values in a range
with a different width, a similar decrease of the fractal di-
mension is observed when comparing with the uniform dis-
tribution case. Therefore, one can conclude that a reasonable
choice for constructing space-filling bearings with fractal di-
mension similar to the one observed in fault gouges is by
taking a random value of « uniformly distributed in a certain
range around 0.5.

IV. THREE-DIMENSIONAL CASE

As described above in Sec. II, a three-dimensional version
of fully random space-filling bearings is obtained in a similar
way as for disks with the single difference that the introduc-
tion of new spheres takes into account four nearest neigh-
bors. In this section we address the case of three-dimensional
space-filling bearings as a more realistic approach to fault
gouges and study how well the two-dimensional model ap-
proximates three-dimensional systems of spheres.

Recently [10], it was found that grain fracture simulations
produce a comminuted granular material similar to the one
observed in real fault gouges. From those simulations, it fol-
lowed that the comminution rate and survival of large grains
is sensitive to applied normal stress, with a fractal dimension
of the resultant grain size distributions in the range
dfe [2.3£0.3,2.9+0.5], which agrees with the observa-
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10000
1000 FIG. 4. Averaging (a) the density p and (b)
the distribution size N(r) over 100 initial configu-
rations starting from large disks (r~R/2) and
N with @ varying in a range [0.5-Aa/2,0.5
100 +Aa/2] with Aa=0.2, 0.4, 0.6, and 0.8. The in-

set of (b) shows that the fractal dimension in
N(r) ~r~% is almost independent of A, yielding

10 dfz 1.54, which is within the numerical errors of
real fault gouges (see text).

tions of three-dimensional samples of real gouges where
typically d,~?2.58.

In three-dimensional space-filling bearings with a con-
stant value of « the fractal dimension lies above the observed
values in fault gouges. In Fig. 6 we plot typical values of dy
as a function of a. The fractal dimension of such bearings is
typically larger than d,=2.58 (dashed line) with values
within the range d; € [2.60+0.10,2.74 + 0.15] and, similarly
to the two-dimensional case, the maximum of df is reached
for a~0.5.

As summarized above in the Introduction, it was recently
found [5] that fractal dimensions ~2.6 are observed for low-
strain gouges. In regions subject to larger shear strain the
fractal dimension is significantly larger, =3. Therefore, the
particle size or mass dimensions were proposed as a way to
distinguish between regions with different strain strengths
[5]. From Fig. 6, one sees that a similar range of values for
the fractal dimension is also found for space-filling bearings.

Furthermore, the explanation relating the fractal dimen-
sion of fault zones and their strain strength assumes that

1.8

1.7

F‘:
Ie
e
e
e
le
e |
I e
L

FIG. 5. The fractal dimension as a function of the exponent 8
when the value of a is chosen according to a power law P(a)
~a P in arange @ €[0.1,0.9]. Although within the error bars, the
fractal dimension is somewhat lower compared to Fig. 4(b) where
the distribution of chosen a values is uniform (see text).
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FIG. 6. The fractal dimension as a function of a for three-
dimensional random space-filling bearings when « is kept constant.
A similar procedure as the one illustrated in Fig. 2 is used, with new
spheres being introduced touching the four nearest neighbors (see
text). The dashed line indicates one typical value d;~2.58 found in
some real fault gouges [10].

fragmentation is controlled by nearest-neighboring particle
contact and that a particle is most likely to split into smaller
particles with a particle of similar size, yielding a larger frac-
tal dimension ~3. In the case of our construction procedure
for space-filling bearings, this would correspond to the case
of @~0.5. Indeed, from Fig. 6 one observes that the maxi-
mum of the fractal dimension is reached for such « values
yielding d;=2.74 +0.15.

We vary « randomly in a range around 0.5 and study the
dependence of the space-filling bearing on the width A« of
the range [0.5—Aa/2,0.5+Aa/2]. In Fig. 7(a) one sees that
the density increases faster for larger Aa, similarly to what
was shown in Fig. 4(a). As for the fractal dimension, Fig.
7(b) shows that it decreases slightly when compared with the
case of constant @ (Aa=0). Therefore, increasing the width
A« of the range of admissible values for a one is able to
reduce the fractal dimension of the bearing.

(b)
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FIG. 7. Three-dimensional space-filling bearings for varying
ae[05-Aa/2,0.5+Aa/2]. (a) The density p as a function of the
number N of spheres for Aa=0, 0.2, 0.6, and 0.8 and (b) the cor-
responding size distribution N(r) with the fractal dimension d, in
the inset. In all cases N=10".
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FIG. 8. (a) The size distribution of two-dimensional cuts of the
three-dimensional space-filling bearings addressed in Fig. 7 and (b)
the corresponding fractal dimension.

Similarly to the situation of measures taken in fault
gouges, the two-dimensional cross section of such three-
dimensional space-filling bearings should have a fractal di-
mension within the range of the observed empirical values in
real fault gouges (d;=1.6*0.1 [3,4]). By averaging several
different two-dimensional cross sections of the three-
dimensional bearings, we plot in Fig. 8(a) the size distribu-
tion of a typical two-dimensional cross section for different
values of Aa. In Fig. 8(b) we observe that only for very wide
ranges of a values is it possible to obtain a fractal dimension
similar to the one observed on fault zones.

V. DISCUSSION AND CONCLUSIONS

In this work we studied the size-distribution of random
space-filling bearings with large polydispersity, showing that
it reproduces well the size distribution found in fault gouges.
Focusing on the dependence of the bearings’ fractal dimen-
sion on the spacing offset, we have shown that the fractal
dimensions of such bearings sweep the low range of values
observed in real faults. Since recently it has been reported
that the fractal dimension varies in space along fault gouges
[5], our findings enable us to conjecture that the occurrence
of seismic gaps, where earthquakes are absent and therefore
behave similarly to roller bearings, may occur in regions
where the fractal dimension lies in the low range of admis-
sible values—namely, d,E€[2.5,2.75].

To compute an accurate value for the exponent character-
izing random bearings, we introduced a general algorithm
that allows « to vary randomly in a wide range of admissible
values, typically 0<a <1, and start the space-filling proce-
dure from one unique large disk (or sphere), maximizing the
range of admissible sizes in the bearing.

With such a model we were able to show that bearings
have a fractal dimension with values within the range of
values in a real fault. Since it is known [5] that along a
specific fault gouge the fractal dimension varies typically
between ~2 and ~3, our results support the hypothesis that
seismic gaps, occurring only in certain particular locations of
the fault, could be explained by this simple geometrical
model.
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Further, we also interpret the control parameter « for the
bearing property as a measure of the fragmentation strength
and introduce simple criteria to improve the computational
efficiency of previous space-filling packing algorithms.

To improve further our findings we should also take the
effect of gravity into account. Moreover, concerning the al-
gorithm by itself, some further properties due to the ad hoc
procedures could be analyzed. Namely, the study of the in-
fluence of correlations and constraints that emerge due to the
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sequential character of the algorithm should help one to un-
derstand the range of observed fractal dimensions. These and
other points will be addressed elsewhere.
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